Bidirectional Frontoparietal Oscillatory Systems Support Working Memory
نویسندگان
چکیده
The ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand. We provide evidence from neurological patients with discrete PFC damage that challenges the dominant models attributing working memory to PFC-dependent systems. We show that neural oscillations, which provide a mechanism for PFC to communicate with posterior cortical regions [13], independently subserve communications both to and from PFC-uncovering parallel oscillatory mechanisms for working memory. Fourteen PFC patients and 20 healthy, age-matched controls performed a working memory task where they encoded, maintained, and actively processed information about pairs of common shapes. In controls, the electroencephalogram (EEG) exhibited oscillatory activity in the low-theta range over PFC and directional connectivity from PFC to parieto-occipital regions commensurate with executive processing demands. Concurrent alpha-beta oscillations were observed over parieto-occipital regions, with directional connectivity from parieto-occipital regions to PFC, regardless of processing demands. Accuracy, PFC low-theta activity, and PFC → parieto-occipital connectivity were attenuated in patients, revealing a PFC-independent, alpha-beta system. The PFC patients still demonstrated task proficiency, which indicates that the posterior alpha-beta system provides sufficient resources for working memory. Taken together, our findings reveal neurologically dissociable PFC and parieto-occipital systems and suggest that parallel, bidirectional oscillatory systems form the basis of working memory.
منابع مشابه
Social working memory and its distinctive link to social cognitive ability: an fMRI study.
Engaging social working memory (SWM) during effortful social cognition has been associated with neural activation in two neurocognitive systems: the medial frontoparietal system and the lateral frontoparietal system. However, the respective roles played by these systems in SWM remain unknown. Results from this study demonstrate that only the medial frontoparietal system supports the social cogn...
متن کاملExternally induced frontoparietal synchronization modulates network dynamics and enhances working memory performance
Cognitive functions such as working memory (WM) are emergent properties of large-scale network interactions. Synchronisation of oscillatory activity might contribute to WM by enabling the coordination of long-range processes. However, causal evidence for the way oscillatory activity shapes network dynamics and behavior in humans is limited. Here we applied transcranial alternating current stimu...
متن کاملEvidence for social working memory from a parametric functional MRI study.
Keeping track of various amounts of social cognitive information, including people's mental states, traits, and relationships, is fundamental to navigating social interactions. However, to date, no research has examined which brain regions support variable amounts of social information processing ("social load"). We developed a social working memory paradigm to examine the brain networks sensit...
متن کاملAs Working Memory Grows: A Developmental Account of Neural Bases of Working Memory Capacity in 5- to 8-Year Old Children and Adults
Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. Th...
متن کاملOscillatory activity during maintenance of spatial and temporal information in working memory.
Working memory (WM) processes help keep information in an active state so it can be used to guide future behavior. Although numerous studies have investigated brain activity associated with spatial WM in humans and monkeys, little research has focused on the neural mechanisms of WM for temporal order information, and how processing of temporal and spatial information might differ. Available evi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 27 شماره
صفحات -
تاریخ انتشار 2017